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1. INTRODUCTION

In vibrations of continuous systems, types of support conditions are important and have
direct e!ect on the solutions and natural frequencies. Boundary conditions of real systems
are idealized by di!erent types of supports such as simply supported, clamped, sliding, free,
etc. The real system is modelled by choosing one of the nearest ideal boundary conditions. It
is always assumed that those ideal conditions are satis"ed exactly. However, small
deviations from ideal conditions in real systems indeed occur. For example, a beam
connected at its ends to rigid supports by pins is modelled using simply supported boundary
conditions which require de#ections and moments to be zero. However, the hole and pin
assembly may have small gaps and/or friction which may introduce small de#ections and/or
moments at the ends. Similarly, a real built-in beam may have very small variations in
de#ection and/or slope. These types of boundary conditions with small deviations from the
ideal conditions are de"ned here as non-ideal boundary conditions.

Non-ideal boundary conditions are modelled using perturbations. The idea is applied to
two beam vibration problems; simply supported beam, sliding}clamped beam. E!ect of
non-ideal boundary conditions on the natural frequencies and mode shapes are examined
for each case using the Lindstedt}PoincareH technique. Next, an axially moving string with
non-ideal boundary conditions is discussed. Assuming small variations in de#ections, it is
found that in addition to changes in natural frequencies, amplitudes of vibration may also
change, resulting in growth or decay of amplitudes depending on the modes of vibrations
and on the axial velocity of the string. In this part, the Lindstedt}PoincareH technique is not
suitable due to amplitude variations and the Method of Multiple Scales is employed
instead, since it can account for those variations.

2. BEAM VIBRATIONS

In this section, two di!erent sets of boundary conditions will be treated. Free vibrations
of an Euler}Bernoulli beam in dimensionless quantities can be written as follows:

L2w

Lt2
#

L2w

Lx4
"0, (1)

where the de#ection w, the time t and spatial variable x are all dimensionless quantities
related to the corresponding dimensional ones as follows:

x"x*/¸, w"w*/¸, t"(1/¸2)JEI/oA t*, (2)
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where EI is the #exural rigidity, o is the density, ¸ is the length and A is the cross-sectional
area of the beam. A review of the vast literature on the topic is beyond the scope of this
study. For some exact solutions of beams and comparison with approximate ones having
di!erent support conditions see references [1}5] for example.

2.1. SIMPLY SUPPORTED BEAM

Here one may assume that both of the boundary conditions are non-ideal or only one is
non-ideal. To reduce the algebra only the right-hand-side boundary conditions will be
taken as non-ideal; hence,

w (0, t)"0,
L2w

Lx2
(0, t)"0, w (1, t)"ea (t),

L2w

Lx2
(1, t)"eb(t). (3)

small de#ections and moments are permitted as deviations from ideal conditions. e is
a small perturbation parameter.

Assuming a solution of the form

w(x, t)"(A cos ut#B sin ut)> (x) (4)

and requiring the time variations at the boundary to be of the same form, gives

>*7!u2>"0, >(0)">A(0)"0, >(1)"ea, >A(1)"eb, (5)

where a and b are constant amplitudes. Following the Lindstedt}PoincareH technique, the
mode shapes and frequencies are expanded in perturbation series as
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1
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0
#eu

1
#2. (6)

Substituting equations (6) into equations (5) and separating at each order, one has
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The well-known solution at the "rst order is

>
0
(x)"J2 sin nnx, u

0
"n2n2, n"1, 2, 3,2, (9)

where >
0
(x) is normalized such that P

1

0

>2
0

dx"1.

At order e, one seeks for a solvability condition. Since the homogenous problem has
a non-trival solution, the non-homogenous problem has a solution only if a solvability
condition is satis"ed [6]. The solvability condition requires that

u
1
"

cos nn

J2 nn
(n2n2a!b). (10)

Substituting equation (10) into equations (8) and solving, one obtains the correction for the
mode shapes

>
1
(x)"

(an2n2#b)

2n2n2 sinh nn
sinh nnx#

cos nn
2n2n2

(n2n2a!b) x cos nnx. (11)
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The "nal solution is

>(x)"J2 sin nnx#e G
(an2n2#b)

2n2n2 sinh nn
sinh nnx#

cos nn
2n2n2

(n2n2a!b)x cos nnxH . (12)

The frequencies due to non-ideal boundary conditions are

u"n2n2#e
cos nn

J2nn
(n2n2a!b). (13)

Depending on the relative amplitudes of variations in de#ections and moments, and mode
numbers, frequencies may increase or decrease. For the special case of n2n2a"b, no change
in frequency is observed. When one considers the "rst mode, displacement variations at the
right end cause a decrease in frequency whereas moment variations cause an increase in
frequency. For the second mode of vibration the reverse is true.

2.2. SLIDING}CLAMPED BEAM

Here to reduce the algebra, one may assume that the sliding boundary condition (i.e.,
displacements are allowed in the vertical direction) is ideal but the built-in boundary
condition at the right-hand side is non-ideal. Hence,

>@(0)">@@@(0)"0, >(1)"ea, >@(1)"eb. (14)

Proceeding in a similar way as presented in the previous section, the frequencies and mode
shapes are "nally calculated as follows:

u"b2!e (b#ab tan b), (15)

>(x)"
1

cos b Acos bx!
cos b
cosh b

cosh bxB
#e G

a

cosh b
cosh bx#x

b#ab tan b
2b cos b Asin bx#

cos b
cosh b

sinh bxBH , (16)

where b satis"es the equation

cos b sinh b#sin b cosh b"0. (17)
TABLE 1

Comparison of the ,rst ,ve natural frequencies for the ideal (e"0) and non-ideal (e"0)1,
a"b"1) cases

n u
0

(Ideal) u (Non-ideal)

1 5)59332 5)72568
2 30)22580 30)67557
3 74)63889 75)40282
4 138)79125 139)86936
5 222)68310 224)07534
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Note that e"0 corresponds to the frequencies and mode shapes for ideal boundary
conditions. The "rst "ve natural frequencies corresponding to the ideal and non-ideal cases
are given in Table 1. Although the non-ideal frequencies increased for the speci"c choice of
a"b"1, this may not always be the case. For the "rst "ve frequencies tan b+!1 and if
b is selected such that b'ab, then a decrease in the frequencies may also be observed.
Generally speaking, slope variations at the right end have a tendency of decreasing the
frequencies, whereas displacement variations have a tendency of increasing them. Contrary
to the simply supported case, these e!ects do not alter with the number of modes.

3. AXIALLY MOVING STRING VIBRATIONS

In this section, a simply supported string moving with a constant axial transport velocity
is considered. At both ends non-ideal boundary conditions are assumed; that is, one allows
small de#ections at the ends. For more information on the general context of axially moving
materials see review papers [7, 8] and some more recent publications [9}21].

The dimensionless equation of motion for the problem is

L2y

Lt2
#2v

L2y

LxLt
#(v2!1)

L2y

Lx2
"0, (18)

where y is the transverse displacement, v is the axial transport velocity, x is the spatial and
t is the time co-ordinate. The dimensionless quantities are related to the dimensional ones as
follows:

y"y*/¸, x"x*/¸, t"t* JP/oA¸2, v"v*/JP/oA, (19)

where ¸ is the length, P is the tension force and oA is the mass per length of the beam.
The non-ideal boundary conditions are formulated as follows:

y(0, t)"e a (t), y(1, t)"e b (t). (20)

Contrary to the beam problems, variations in displacements at the boundaries a!ect
frequencies as well as amplitudes. Therefore the Lindstedt}PoincareH technique is not
suitable for this problem. Instead, the Method of Multiple Scales [6] is employed in search
of approximate solutions.

The following expansion is assumed:

y (x, t; e)"y
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1
), (21)

where ¹
0
"t is the fast time scale and ¹

1
"e t is the slow time scale. Time derivatives are

de"ned as
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1
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0
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D

1
, (22)

where D
n
"L/L¹

n
. Substituting the expansions into the original equation and boundary

conditions and separating at each order of e, one "nally has
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where prime denotes derivative with respect to the spatial variable.
At the "rst order, the solution is

y
0
"A(¹

1
) e*uT0>(x)#AM (¹

1
) e~*uT0>M (x), (25)

where the mode shapes and frequencies are

>(x)"e*nnvx sin nnx, u"nn(1!v2), n"1, 2, 3,
2

. (26)

At order e, one inserts the order 1 solution (i.e., equation (25)) into the right-hand side of
equation (24):
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0
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1
#2vD

0
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#(v2!1) yA

1
"!2iuD

1
Ae*uT0>!2vD

1
Ae*uT0>@#c.c., (27)

where c.c. stands for complex conjugate of the preceding terms. Assuming a solution of the
following form:

y
1
"t (x, ¹

1
) e*uT0#c.c. (28)

and substituting into equation (27) and boundary conditions in equation (24), one has

!u2t#2viut@#(v2!1)tA"!2iuD
1
A>!2vD

1
A>@,

t (0, ¹
1
)"aA(¹

1
), t(1, ¹

1
)"bA(¹

1
). (29)

The solvability condition [6] requires

D
1
A"i(v2!1)(a!b cos nn e~*nnv)A(¹

1
), (30)

whose solution is

A(¹
1
)"Ce*(v2~1)(a~b #04 nn %~*nnv)T1, (31)

where C"(1/2) ce*h is a complex constant. Substituting back equations (31) and (26) into
equation (25), returning to the original time variable and simplifying, one "nally obtains the
approximate response as follows:

y (x, t)"cee*(1~v2)b #04 nn 4*/ nnv+t cosM[nn(1!v2)#e (1!v2)(b cos nnv cos nn!a)]t

#nnvx#hN sin nnx, (32)

where c and h are constants to be determined by initial conditions. The frequency due to
non-ideal boundary conditions is

u
n,i
"nn(1!v2)#e(1!v2) [b cos nnv cos nn!a]. (33)

The ideal (e"0) and non-ideal frequencies (e"0)1, a"b"1) are drawn as functions of the
axial transport velocity in Figure 1. Although the non-ideal frequencies are always smaller
than or equal to the corresponding ideal ones in the "gure, depending on the sign of the
bracket of equation (33), an increase may also be observed. The right-hand variations in
displacements have a tendency of increasing the frequencies, whereas the left-hand
variations have a tendency of decreasing them.



Figure 1. Ideal (**) and non-ideal (} ) } ) } ) }) frequencies as functions of the axial transport velocity for "rst,
second and third modes (e"0)1, a"1, b"1).

TABLE 2

Qualitative behavior of amplitudes depending on the mode numbers and axial velocity

Mode numbers Decay Growth Bounded

1 0(v(1 None v"0
2 1/2(v(1 0(v(1/2 v"0, 1/2
3 0(v(1/3, 2/3(v(1 1/3(v(2/3 v"0, 1/3, 2/3
4 1/4(v(1/2, 3/4(v(1 0(v(1/4, 1/2(v(3/4 v"0, 1/4, 1/2, 3/4
5 0(v(1/5, 2/5(v(3/5, 1/5(v(2/5, 3/5(v(4/5 v"0, 1/5, 2/5, 3/5, 4/5

4/5(v(1
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Another interesting feature of the non-ideal boundary conditions is the growth or decay
of amplitudes depending on the argument of the exponential term in equation (32). Since
(1!v2) and b are positive quantities, the sign of the exponential term is determined by the
cosine and sine functions. The signs of these functions are determined by the mode number
n and velocity v only. Depending on these parameters, the amplitudes of solutions may
grow, decay or remain constant. For the "rst "ve modes, the qualitative behavior of
amplitudes is summarized in Table 2.

The present analysis shows that the change of amplitudes results from the displacement
variations at the right-hand-side boundary condition only. When b"0, the frequencies are
always lower and the amplitudes are always bounded in time.

The ideal (e"0) and non-ideal (e"0)1) mode shapes are contrasted in Figure 2 for
v"1/3 for the "rst mode. The decay in amplitudes and the decrease in frequency are readily
observed. For the second mode, one example plot for decaying amplitudes (v"2/3) and
another example plot for growing amplitudes (v"1/3) are shown in Figures 3 and 4
respectively. In each of the "gures, frequencies decrease due to non-ideal boundary



Figure 2. Comparison of vibrations of "rst mode for axially moving string for the cases of ideal boundary
conditions (**) and non-ideal boundary conditions (} ) } ) } ) }) (e"0)1, a"1, b"1, c"1, h"0, x"1/2 and
v"1/3).

Figure 3. Comparison of vibrations of second mode for axially moving string for the cases of ideal boundary
conditions (**) and non-ideal boundary conditions (} ) } ) } ) }) (e"0)1, a"1, b"1, c"1, h"0, x"1/3 and
v"2/3).
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conditions. However, if the values of b are increased further, an increase in frequencies may
also occur.

4. CONCLUDING REMARKS

Non-ideal boundary conditions are de"ned and formulated using perturbation theory.
Sample problems from the vibrations of continuous systems are treated. Two di!erent beam



Figure 4. Comparison of vibrations of second mode for axially moving string for the cases of ideal boundary
conditions (**) and non-ideal boundary conditions (} ) } ) } ) }) (e"0)1, a"1, b"1, c"1, h"0, x"1/3 and
v"1/3).
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vibration problems and an axially moving string problem are treated using the
Lindstedt}PoincareH technique and the method of multiple scales. It is shown that non-ideal
boundary conditions may a!ect the frequencies as well as amplitudes of vibration.
Depending on the location of non-ideal support conditions and their small variations in
time, frequencies may increase or decrease. For the beam problems, the e!ect is only on the
frequencies. In the axially moving string problem, however, it is shown that in addition to
frequencies, amplitudes of vibration also may grow or decay in time.

Linear vibrations of continuous systems are treated here using the non-ideal boundary
condition concept. Non-linear vibrations of a beam using the same concept have been
treated recently [22].
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